
The Sound Group
Joe Bota
Aaron Camm
Alex Cueto

Brief Overview ● The Physics of Sound
● Audio Formats
● Music and Dynamic Audio

Of Our Presentation

The Physics of Sound
Joe Bota

Properties that Affect Sound Propagation

● Attenuation
● Reflection
● Diffusion
● Absorption
● Refraction
● Diffraction

Attenuation

● This is the natural rate at which sound
decays in strength.

● The simplest attenuation of sound can be
represented by the Inverse-Square Law.

Intensity = power / (4 * π * d ^ 2)

power = power of sound source

d = distance traveled

Reflection

● The degree and angle at which sound is
deflected off of an obstacle.

● Can focus sound onto a central focal point
or cause echoing.

(eg. Smooth surfaces like marble have high reflection.)

Diffusion

● When a surface is not perfectly reflective,
diffusion will occur, scattering the sound
waves.

● This will weaken and obfuscate sound.

(eg. Rocky surfaces with crags and rough edges
cause sounds to diffuse.)

Absorption

● Sometimes, objects can absorb sound,
causing them to lose energy and decay
faster.

● This also causes a sound’s strength to
decay faster.

(eg. Foam has high absorption.)

Refraction

● Bending of sound when passing through
an uneven medium.

● Very rare with sound.

(eg. Sound passes over a lake, thus bending it
towards the shore because of the water below.)

Diffraction

● The “shadow” that a sound casts when
passing by an obstacle.

● A sound has reduced volume when not in
the direct line of sight.

(eg. A sound wraps around an object in order to
reach the listener, thus resulting in the sound
seeming further away.)

Games that use some degree of sound propagation.

Assassin’s Creed

Metal Gear Solid

P. T.

Basically, any game where immersion and

sound are integral to the experience.

A “Ubisoft-esque” Approach to Sound
Propagation

This is an adaptation of a technique discussed at GDC 2012 by Jean-Francois
Guay of Ubisoft Montreal. It is absent of some optimizations for the sake of
simplicity.

● Uses attenuation and graph theory to emulate diffraction.
● Relatively low cost, even without optimizations.
● Can be implemented relatively easily into Unity.

Breakdown of the Methodology

● Populate the environment with nodes at each corner of
geometry.

● Generate a graph between all nodes where edges do not
collide with geometry

● Calculate the shortest distance between each node using
an algorithm like Dijkstra’s algorithm.

● During gameplay, when a sound is emitted out-of-sight of
the player, find all line-of-sight vertices near player and
sound, and determine shortest path to each other.

● Use this distance to calculate intensity of sound and then
emit sound from the vertex closest to the player from
within the shortest path.

A Rough
Implementation

● IsInRangeOf functions calculates whether a node
can be reached directly via Raycast. This is what
makes it valid.

● TotalDistance takes two indices of nodes and
retrieves their distance along with each nodes’
distance from the player and sound source.

● activePlayerNode is the node in which a sound
will ultimately emit. It is effectively the closest
node to the player along the graph.

● PlayAudio plays a sound bit from the
activePlayerNode and uses the closestDistance to
determine the sound’s volume.

More Code Snippets
● nodeDistances is the distance between two nodes, given their indices. This is meant to be calculated upon the room’s

instantiation.
● IsInRangeOfSource merely says whether a node can be reached without obstruction.

Quick Demo
● The formula for attenuation is linear instead of Inverse-Square, for the sake of simplicity.
● Does not account for height. This could be fixed by implementing some of the optimizations specified in

Ubisoft’s powerpoint.

A toolkit that does this much better than from scratch can be found here:

https://www.assetstore.unity3d.com/en/#!/content/40200

(Unfortunately, it costs $25.)

https://www.assetstore.unity3d.com/en/#!/content/40200
https://www.assetstore.unity3d.com/en/#!/content/40200

Audio Encoding
Aaron Camm

Audio Encoding - Sampling

● Majority of digital recording system work in the similar
matter
○ Utilizes a system called Pulse Code

Modulation (PCM)
● Audio signals is fed into an Analog-to-digital converter

○ Takes measurements of audio signal at
regular intervals

○ stores each measurement as a number
● Measured data is sent to a Digital to Analog converter

○ Converter recreates audio signal from
measured data that was recorded

Audio Encoding - Sampling

● Problem with storing PCM measurements
○ Aims to be the most accurate reproduction of audio
○ Includes Audio data that humans can't hear

● Results in a very large size
○ a 'CD - quality' audio (16 - bit, 44100 Hz sample) would be 10 mb per minute.
○ The problem of file size is solved through an encoding method.

Audio Encoding- Types

● Audio is Encoded in three main types.
○ Lossless Uncompressed Encoding

■ Ex: LPCM, PCM
○ Lossless Compressed Encoding

■ No Sound information is loss
■ Ex: FLAC, ALAC

○ Lossy Compressed Encoding
■ Irrelevant sound information is discarded.

● Utilizes Psychoacoustic
■ Ex: MP3, Vorbis

Audio Encoding - Lossy Compression

● Removes Sound information that Human Ears' can't distinguish.

● Human can't hear sound below 20Hz or above 20kHz, approximately.
○ Frequencies between 1 to 5 kHz are best perceived at low volumes.

● Removing sound information that is being masked by another signal.
○ when a loud signal occurs, other signals close in frequency or time are difficult to hear.

Audio Encoding - Lossy Compression (MP3)

● Separates a PCM waveform measurements in frames,
○ usually 576 samples each frame.

● Each frame is divided into a bandpass filters to set of 576 frequency
ranges
○ These frequency bands are between 20 Hz and 20000 Hz, approximately

Audio Encoding - Lossy Compression (MP3)

● Performs Fast Fourier Transforms
○ check to see if any sounds are at a close frequency to louder sounds. (Masking)

● Modified Discrete Cosine Transform
○ frames are sorted based on their different "window" patterns (steady or constant)

■ each steady pattern are described via 3 short windows (each 192 samples)
■ each constant pattern is described with 1 long window (each 576 samples)
■ each window is then turned into a set of spectral values

● each value represent the energy across the range of frequencies.

Audio Encoding - Lossy Compression (MP3)

● Compresses the values through use of Quantization and Huffman coding.
○ 576 post-MDCT frequency bands are sorted to 22 scalefactor band

■ divides each by a quantizer and rounding
■ whether a band is rounded up or down is determined by the FFTs
■ the lower the scale is, the less space it need

○ While quantizing, uses information in scalefactor to point to a shorter variable length
binary string (Hoffman Code)
■ shorter numbers are for less precise, and quickly taken from Huffman Tables
■ The shorter binary string are used for the construction of the encoding

Audio Encoding - Lossy Compression (MP3)

Simple Waveform of Chirp Sound from 20kHz to 22kHz, size is 2.5 MB in PCB encoding

Same sound as above, encoded in MP3, size is 469 KBs

Making Sweet Music...
...except not really, because we’re not composers

● Chiptunes & PC Speakers
○ Sequence audio - written in hex
○ Limited sound channels led to distinctive sounds
○ Relied on simple melodies

● MIDI and Redbook
○ MIDI is sequence audio: The Next Generation

■ Synthesized instruments controlled by keyboard
■ Standardized equipment and software standards

○ Redbook is the CD-audio standard
■ Sounds like recorded audio because it is
■ Early redbook audio in games difficult to sync and

doesn’t loop - just plays off disc

● Modern Digital Audio
○ Can be sequence or recorded
○ Modern compression and digital audio recording means

we don’t have to rely on Redbook for recorded music
○ Easy to edit, sync, and work with

VG Music History
in a Nutshell

Putting Music Into Unity

● AudioSources
○ Attach to gameObjects
○ Can have multiple on each, Unity treats like an array
○ A single AudioSource cannot string together AudioClips without a gap

● AudioClips
○ Played by AudioSources
○ One AudioSource can play any number of AudioClips, but not simultaneously

Changing
Properties of Audio

● Properties such as
volume and pitch can
change based on
several factors as
determined by the
programmers

Changing Music in a Scene

● An AudioSource can stop playing a clip and play a new one, but there will
be a gap
○ This may change in later versions of Unity

● Multiple AudioSources can be used with crossfading for clean transitions
● For ongoing seamless transitions, two simultaneous AudioSources can be

used
○ Dependent on sound editing for synchronization

Dynamic Sound Demo

● Volume and pitch changes
● Use of two simultaneous AudioSources on MusicManager object
● Used in games such as Super Mario 3D Land and the bit.trip series

What if we could do more...

Adaptive Music

● The very flow of the music changes based on gameplay events
● The songs change or even the components of a single song are rearranged
● Requires careful sound editing and use of in-game triggers
● In Unity, two AudioSources are used for clean transitions since there are

more of them than with longer single clips

Fancy Adaptive Music Demo

● How it works
● How can we make it even better?
● This was a simple demo, what does this mean for finished saleable

games?

Questions?

Thank You!

References
● Physics of Sound

○ http://gdcvault.com/play/1015492/Real-time-Sound-Propagation-in

● Audio Formats
○ http://www.soundonsound.com/sos/may00/articles/mp3.htm

○ http://arstechnica.com/features/2007/10/the-audiofile-understanding-mp3-compression
(and its slides)

● Music and Dynamic Audio
○ http://vgsoundtest.blogspot.com/2013/04/dynamic-music-demo-rooftop-run.html (video

no longer available, sadly)
○ https://www.youtube.com/watch?v=CKgHrz_Wv6o (Extra Credits)

○ http://forum.unity3d.com/threads/dynamic-music-in-unity-examples.297631/ (Unity
forum, many good informational links)

http://gdcvault.com/play/1015492/Real-time-Sound-Propagation-in
http://gdcvault.com/play/1015492/Real-time-Sound-Propagation-in
http://www.soundonsound.com/sos/may00/articles/mp3.htm
http://www.soundonsound.com/sos/may00/articles/mp3.htm
http://arstechnica.com/features/2007/10/the-audiofile-understanding-mp3-compression
http://vgsoundtest.blogspot.com/2013/04/dynamic-music-demo-rooftop-run.html
https://www.youtube.com/watch?v=CKgHrz_Wv6o
https://www.youtube.com/watch?v=CKgHrz_Wv6o
http://forum.unity3d.com/threads/dynamic-music-in-unity-examples.297631/

